76 research outputs found

    Closed-loop Reference Models for Output-Feedback Adaptive Systems

    Full text link
    Closed-loop reference models have recently been proposed for states accessible adaptive systems. They have been shown to have improved transient response over their open loop counter parts. The results in the states accessible case are extended to single input single output plants of arbitrary relative degree.Comment: v1 Submitted to European Control Conference 2013, v2 Typos correcte

    Cumulative Prospect Theory Based Dynamic Pricing for Shared Mobility on Demand Services

    Full text link
    Cumulative Prospect Theory (CPT) is a modeling tool widely used in behavioral economics and cognitive psychology that captures subjective decision making of individuals under risk or uncertainty. In this paper, we propose a dynamic pricing strategy for Shared Mobility on Demand Services (SMoDSs) using a passenger behavioral model based on CPT. This dynamic pricing strategy together with dynamic routing via a constrained optimization algorithm that we have developed earlier, provide a complete solution customized for SMoDS of multi-passenger transportation. The basic principles of CPT and the derivation of the passenger behavioral model in the SMoDS context are described in detail. The implications of CPT on dynamic pricing of the SMoDS are delineated using computational experiments involving passenger preferences. These implications include interpretation of the classic fourfold pattern of risk attitudes, strong risk aversion over mixed prospects, and behavioral preferences of self reference. Overall, it is argued that the use of the CPT framework corresponds to a crucial building block in designing socio-technical systems by allowing quantification of subjective decision making under risk or uncertainty that is perceived to be otherwise qualitative.Comment: 17 pages, 6 figures, and has been accepted for publication at the 58th Annual Conference on Decision and Control, 201

    Safe and Stable Adaptive Control for a Class of Dynamic Systems

    Full text link
    Adaptive control has focused on online control of dynamic systems in the presence of parametric uncertainties, with solutions guaranteeing stability and control performance. Safety, a related property to stability, is becoming increasingly important as the footprint of autonomous systems grows in society. One of the popular ways for ensuring safety is through the notion of a control barrier function (CBF). In this paper, we combine adaptation and CBFs to develop a real-time controller that guarantees stability and remains safe in the presence of parametric uncertainties. The class of dynamic systems that we focus on is linear time-invariant systems whose states are accessible and where the inputs are subject to a magnitude limit. Conditions of stability, state convergence to a desired value, and parameter learning are all elucidated. One of the elements of the proposed adaptive controller that ensures stability and safety is the use of a CBF-based safety filter that suitably generates safe reference commands, employs error-based relaxation (EBR) of Nagumo's theorem, and leads to guarantees of set invariance. To demonstrate the effectiveness of our approach, we present two numerical examples, an obstacle avoidance case and a missile flight control case.Comment: 10 pages, 5 figures, IEEE CDC 202

    Discrete-Time Adaptive Control of a Class of Nonlinear Systems Using High-Order Tuners

    Full text link
    This paper concerns the adaptive control of a class of discrete-time nonlinear systems with all states accessible. Recently, a high-order tuner algorithm was developed for the minimization of convex loss functions with time-varying regressors in the context of an identification problem. Based on Nesterov's algorithm, the high-order tuner was shown to guarantee bounded parameter estimation when regressors vary with time, and to lead to accelerated convergence of the tracking error when regressors are constant. In this paper, we apply the high-order tuner to the adaptive control of a particular class of discrete-time nonlinear dynamical systems. First, we show that for plants of this class, the underlying dynamical error model can be causally converted to an algebraic error model. Second, we show that using this algebraic error model, the high-order tuner can be applied to provably stabilize the class of dynamical systems around a reference trajectory.Comment: 8 pages, submitted to the 2023 AC
    • …
    corecore